
Simple and Effective GPU-based Mesh
Optimization

Eric Shaffer1, Zuofu Cheng1, Raine Yeh1, George Zagaris2, and Luke Olson1

1 Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL 61801 shaffer1@illinois.edu

2 Kitware Inc. george.zagaris@gmail.com

Summary. We present a GPU-based algorithm for optimizing the shape of
elements in tetrahedral volume meshes. To exploit the massive parallelism
available in modern GPU hardware, optimization occurs on a per-vertex basis
using only local neighborhood information. A classical derivative-free numeri-
cal optimization method is employed to optimize the minimum dihedral angle
of the component tetrahedron elements. Preliminary results demonstrate the
GPU as a promising platform for mesh optimization with notable speedups.
The final mesh exhibits high-quality comparable to state-of-the-art CPU tech-
niques. Ongoing efforts are focused on further performance optimizations as
well as scaling to multiple GPUs.

Key words: Mesh optimization; parallel algorithms.

1 Introduction

Mesh quality is a key concern in engineering and scientific computing applica-
tions. The shape of mesh elements can significantly impact the efficiency and
accuracy of simulation codes. In this paper we describe what is to our knowl-
edge the first application of GPU computing to the problem of element shape
optimization. Optimization is accomplished on a per-vertex basis, with each
GPU thread assigned the task of optimizing a vertex position by employing
a classic derivative-free numerical optimization technique. This algorithm is
simple to implement and fast. In our experiments, the GPU-based algorithm
was shown to converge to a high-quality solution up to three times faster
than a state-of-the-art serial method for large meshes. These results demon-
strate the scalability and effectiveness of the GPU as a platform for mesh
optimization.



2 Eric Shaffer, Zuofu Cheng, Raine Yeh, George Zagaris, and Luke Olson

2 Background

Mesh optimization is a well-researched activity with an abundant body of lit-
erature that aims to improve the quality of the mesh by altering mesh charac-
teristics without fundamentally impacting the accuracy with which the mesh
models a domain. For example, an early mesh optimization (or smoothing)
technique was based on repeated averaging of a vertex position in a neighbor-
hood [9]. Newer techniques cast mesh smoothing as a numerical optimization
problem. Here, an objective function is defined using a quality metric mea-
suring desired geometric properties. Examples include optimizing the inverse
mean-ratio metric [4, 10] or the condition number of the Jacobian matrix [7].
Freitag, Knupp and others developed Mesquite [3], a linkable software library
for mesh quality improvement through vertex repositioning which we have
chosen to measure the efficacy of our proposed algorithm.

Our approach to GPU-based mesh optimization was informed by the work
of Freitag et al. on parallel mesh optimization in a classical distributed mem-
ory computing environment [2]. Their algorithm seeks out parallelism by de-
composing the mesh optimization problem on a per-vertex basis. When op-
timizing the position of a single vertex v, the domain of the optimization
problem becomes the set of elements Ev neighboring v. An objective function
is created by combining the quality measures of the elements in Ev in some
manner, which was shown to generate good results for cluster-style parallelism
in [2]. Our work as demonstrated in [12] show that for surface mesh optimiza-
tion this fine-grained decomposition is appropriate for the massively-threaded
nature of modern GPU processors.

3 Volume Mesh Optimization

We start the optimization problem by defining the quality metric of a tetra-
hedron as the minimum dihedral angle. This measure is commonly used and
very intuitive, and therefore well-suited to our purpose. For each vertex, we
consider the best position as the one which results in the minimum objective
function evaluation, which in our case is the reciprocal of the minimum dihe-
dral angle among the tetrahedron that include that vertex. Notice that this
this objective function is not smooth; discontinuities can occur at points where
the minimum dihedral angle shifts from one element to another as the vertex
is moved. This motivates our choice of derivative-free optimization methods,
similar to the multi-directional search algorithm proposed by [11]. Therefore,
we have chosen to employ the Nelder-Mead Simplex method [1].

3.1 GPU Implementation

The first step in the GPU optimization algorithm is to find the surface vertices,
which are fixed to prevent alteration of the shape of the mesh. The non-surface



Simple and Effective GPU-based Mesh Optimization 3

vertices are then labeled and parsed by the CPU to yield a precomputed
independent neighborhood, which corresponds to the coordinate positions of
the vertices which the objective function is evaluated among. Each vertex
must not be simultaneously optimized as its neighbor, which is guaranteed by
a simple First Fit labeling of the vertices [8] included in the pre-computation.
This data is initially stream into the GPU global memory, but is immediately
loaded in parallel to the shared memory of each thread block, which is either 16
or 32 threads. The shared memory acts as a manually managed cache, allowing
us to evaluate the objective function without having to read out of global
memory. The variability in block size is due to the variable neighborhood size
of each tetrahedron and the fact that all the neighborhood vertices for the 16
or 32 vertices to be optimized must fit into 48 kilobytes of shared memory.
Each thread then generates a local simplex used for optimization, which is a
tetrahedron given by corners perturbed by a factor scaled by the minimum
length of incident edges to the mesh vertex.

Once the initial simplices are computed, each vertex begins its independent
optimization following the Nelder-Mead algorithm. For each of the four points
in the simplex, the objective function is given by

Q(pv) =
1

min(θv)

where p is the position of each simplex of vertex v and θv are the dihedral
angles of the tetrahedron elements that include vertex v. There is an addi-
tional condition which assigns a high value for Q(pv) if the proposed pv is
outside a pre-determined allowable radius to prevent mesh inversion. Based
on the relative values of the function at the sampled points, the simplex is
transformed using a combination of expansion, reflection, and contraction
operations. These operations move one or more corners of the locally stored
simplex based on a step-size parameter. Ultimately, the simplex should flow to
areas yielding lower function values and contract around a minimum, yielding
the optimal position of the vertex. For a complete explanation of the Nelder-
Mead algorithm, the book by Conn et al.[1] is an excellent resource. After the
last iteration the result is written out and replaces the original mesh vertex
position with the newly found best simplex vertex. When all the threads of
the given set have completed, the updated vertex positions are copied back
into the host memory and a new kernel is launched with the next independent
set.

3.2 Experimental Results

In assessing the effectiveness of the proposed algorithm, we consider its ability
to improve the minimum dihedral angle found in a mesh. Our code demon-
strably accomplishes this in all our test meshes except for the Large Rocket
mesh in which the minimum dihedral angle is locked by its occurrence on the
boundary. Even so, the minimum interior dihedral angle moves from 13 to 22



4 Eric Shaffer, Zuofu Cheng, Raine Yeh, George Zagaris, and Luke Olson

degrees. Angle improvements among other meshes range from around 30 to
122 percent.

Table 1. Performance on tetrahedral meshes for the GPU algorithm and Mesquite.
Vertex count includes only interior vertices. Interior angles for Big Rocket indicated
in parentheses.

Mesh
Number Number

Method
Converge Dihedral Angle (◦) Inv. Mean Ratio

of Vertices of Tets Time min avg min max avg

Small Rocket 58981 468623
unopt. — 12.5 47.5 2.2 1.1
GPU 7s 21.2 47 2.6 1.1

Mesquite 4s 12.2 49 2.2 1.1

Small Sphere 70849 1166714
unopt. — 5 40 5.7 1.6
GPU 5s 7 39 5.8 1.6

Mesquite 12s 6 41 3.8 1.4

Big Sphere 290739 4720255
unopt. — 4.5 41 8.6 1.6
GPU 20s 6 41 5.3 1.6

Mesquite 2m 5.4 41 5.5 1.5

Big Rocket 2202793 14992367
unopt. — 11 (13) 46 2.5 1.2
GPU 1m17s 11 (22.5) 46 2.5 1.2

Mesquite 3m50 11 (19) 48 2.3 1.1

Wing 4484039 27725125
unopt. — 5.8 51 6.1 1.1
GPU 4m27s 12.9 51 3.3 1.1

Mesquite 14m40s 7.2 52 3.7 1.1

We chose to compare the GPU-based algorithm with a mesh optimiza-
tion code provided by Mesquite, which implements a current state-of-the-
art algorithm as shown in Freitag et. al [5, 6]. The serial Mesquite algorithm
employs gradient-based optimization which typically converges much faster
than a derivative-free method. In order to achieve fine-grained parallelism,
our algorithm formulates mesh optimization in terms of finding the maximum
of a non-smooth function. This makes it problematic to employ the faster
gradient-based algorithms. However, as shown in Table 1, the GPU-based al-
gorithm exhibits a significant speedup over Mesquite for large meshes due to
the parallelism offered by the fine-grained approach. For the largest mesh, the
Wing, the GPU algorithm was 3 times faster than Mesquite and generated
slightly better mesh quality. For smaller meshes, as seen in the Small Rocket,
Mesquite converged faster than the GPU-based algorithm. Comparison of the
GPU-based method to serial derivative-free optimization would exhibit even
greater speedup, as demonstrated by the results for surface mesh optimization
in [12] . In measuring performance, we compared the CPU time for Mesquite
running on a Xeon X5550 to the combined CPU pre-processing and GPU time
on the same computer with the addition of a Tesla C2070.



Simple and Effective GPU-based Mesh Optimization 5

4 Conclusion and Future Work

The overall results in our experiments show that volume mesh optimization
by GPU can be significantly faster than equivalent serial methods, suggest-
ing that the GPU offers a very promising platform for mesh optimization.
Moreover, we believe the local mesh optimization framework employed on the
GPU will ultimately prove more scalable than global optimization techniques.
We expect future work will focus on maximizing the scalability of GPU-based
mesh optimization, allowing for out-of-core optimization as well as scaling to
multi-core GPU systems.

References

1. Andrew R. Conn, Katya Scheinberg, and Luis N. Vicente. Introduction to
Derivative-Free Optimization. Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, USA, 2009.

2. Lori Freitag, Mark Jones, and Paul Plassmann. A parallel algorithm for mesh
smoothing. SIAM J. Sci. Comput., 20(6):2023–2040, 1999.

3. Lori Freitag, Patrick Knupp, Thomas Leurent, and Darryl Melander.
MESQUITE design: Issues in the development of a mesh quality improvement
toolkit. In Proceedings of the 8th International Conference on Numerical Grid
Generation in Computational Field Simulations, pages 159–168, 2002.

4. Lori Freitag, Patrick Knupp, Todd Munson, and Suzanne Shontz. A comparison
of two optimization methods for mesh quality improvement. In Proceedings, 11th
International Meshing Roundtable, pages 29–40, September 2002.

5. Lori Freitag, Patrick Knupp, Todd Munson, and Suzanne Shontz. A compar-
ison of inexact newton and coordinate descent mesh optimization techniques.
In Proceedings of the 13th International Meshing Roundtable, pages 243–254,
Williamsburg, VA, September 2004.

6. Lori Freitag, Patrick Knupp, Todd Munson, and Suzanne Shontz. A comparison
of two optimization methods for mesh quality improvement. Invited Submission.
Engineering with Computers, 22(2):61–74, May 2006.

7. Lori Freitag and Patrick M. Knupp. Tetrahedral element shape optimization
via the jacobian determinant and condition number. In Proceedings of the 8th
International Meshing Roundtable, pages 247–258, 1999.

8. A. Gyrfs and J. Lehel. On-line and first fit colorings of graphs. Journal of Graph
Theory, 12(2):217–227, 1988.

9. Peter Hansbo. Generalized Laplacian smoothing of unstructured grids. Com-
munications in Numerical Methods in Engineering, 11(5):455–464, 1995.

10. Todd Munson. Optimizing the quality of mesh elements. SIAG/Optimization
News and Views, 16:27–34, 2005.

11. Jeonghyung Park and Suzanne M. Shontz. Two derivative-free optimization
algorithms for mesh quality improvement. Astrophysical Journal Supplement
Series, 186:457–484, 2010.

12. Eric Shaffer and George Zagaris. GPU accelerated derivative-free mesh opti-
mization. In GPU Computing Gems Jade Edition. Morgan Kaufmann, 2011.


